
RD t-73 11i THE SHIFTING BOTTLENECK PROCEDURE FOR JOB SHOP 1/1
SCHEDULING(U) CARNEGIE-MELLON UNIV PITTSBURGH PA
MANAGEMENT SCIENCES RESEARCH GROUP J ADAMS ET AL

UNCLASSIFIED JUL 86 MSRR-525 N88814-85-K-8198 F/G 5/1 UL

EIhEEEEEIIEEEE
El......III

4-5

~1

flhI M 2

' Ito

V..%L

1111.25 LA111. 1.6

CROCOPY RESOLUTION TEST CHART
1 .)7 NAL BUREAU OF STANDARDS-1963-A

, , _.4

I I;

DTIC
ELECTE

D

I- -

Carnegie-MelIon University
mnISUlH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILLIAM LARIMER MELLON, FOUNDER

DJ8IIJ 10 019ONS
Appboym i public r.1..o

86 10 01 199

0
W. P. 84-86-87

Management Science Research Report No. MSRR-525

THE SHIFTING BOTTLENECK PROCEDURE

FOR JOB SHOP SCHEDULING

by

Joseph Adams, Egon Balas

Carnegie Mellon University

and

Daniel Zawack

American Airlines

DTIC
J 6ELECTE

D

The research underlying this report was supported by Grant
ECS-8503192 of the National Science Foundation and Contract
N00014-85-K-0198 with the U. S. Office of Naval Research. Reproduction
in whole or in part is permitted for any purpose of the U. S.
Government.

Manabement Science Research Group
Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

TIBu=ON STATMENT Ai
Approved fox public release;

Dis triution Unlimited .

Abtact

We describe an approximation method for solving the minimum

makespan problem of job shop scheduling. It sequences the machines

one by one, successively, taking. each time the machine identified as a

bottleneck among the machines not yet sequenced. Every time after a

new machine is sequenced, all previously established sequences are

locally reoptimized. Both the bottleneck identification and the local

reoptimization procedures are based on repeatedly solving certain

one-machine scheduling problems. Besides this straight version of the

Shifting Bottleneck Procedure, we have also implemented a version that

applies the procedure to the nodes of a truncated search tree.

Computational testing shows that our approach yields consistently better

results than other procedures discussed in the literature. A high point

of our computational testing occurred when the enumerative version of

the Shifting Bottleneck Procedure found in a little over five minutes an

optimal schedule to a notorious ten machines/ten jobs problem on which

many algorithms have been run for hours without finding an optimal

solution.
Accesion For

NTIS CRA&I
DTIC TAB __
Uinaqnotjrcd El
J,4stifIiC tior .By
DO~ ib'jtio,/ €

Availability Codes

A'oil a,- cjior

Di-t.I SpLc'u~

1. The Problem

The job shop scheduling or machine sequencing problem is as follows.

Jobs (items) are to be processed on machines with the objective of minimizing

some function of the completion times of the jobs, subject to the constraints

that (i) the sequence of machines for each job iu prescribed; and (ii) each

machine can process only one job at a time. The processing of a job on a

machine is called an operation; its time (duration) is fixed, and it cannot be

interrupted. Here we choose the objective of minimizing the makespan, i.e. the

time needed for processing all jobs. The problem can then be stated as

min t n

t. - t. > d. (i,j) A(F) J 1 -
ti> 0, i a N

t. - t. > d. v t. - t. I d. (i,j) aEk, k a M

where d. is the (fixed) duration (processing time) and t. the (variable)
1 1

start time of operation i; N is the set of operations, N the set of machines,.

A the set of pairs of operations constrained by precedence relations

representing condition (i) above, while Ek is the set of pairs of operations

to be performed on machine k and which therefore cannot overlap in time, as

specified in (ii). Any feasible solution to (P) is called a schedule. For

literature on this subject, see (1, 4, 5, 8, 11].

It is useful to represent this problem on a disjunctive graph [12, 21

G = (NA9AB), with node set n, ordinary (conjunctive) arc set A, aid

disjunctive arc set B. Figure 1 illustrates this graph for a problem with 14

operations (on five jobs) and four machines. The nodes of G correspond to

operations (the source 0 and the sink n are the dummy "start" and "finish"

operations), the directed arcs to precedence relations, and the pairs of

disjunctive arcs to pairs of operations to be performed on the same machine.

I

The numbers on the arcs are the processing times.. The met of disjunctive

arcs I decomposes into cliques 3 k, = U (Ek : kaM), one for each machine.

2 2

=3

Fill. !.

We will denote by D -(N,A) the directed graph obtained from G by

rmoving all the disjunctive arcs. A select oa Sk in Bk consists of

" exactly one memer of each disjunctive arc pair of 3k . A selection is
~acyclic if it contains no directed cycle. Bach acyclic selection

Sk corresponds to a unique sequence of the operations pertaining to machine

k, end vice-versa. Thus sequencing a aachie k means choosing an acyclic

selection in Bk. A coplete selection S consists of the union of

selections 5k , one in each B1k , k a M. Picking a complete selection S, i.e.

replacing the disjunctive arc set B by the ordinary (conjunctive)

arc set S, gives rise to the (ordinary) directed graph D S = (N, Aks).

A complete selection S is acyclic if the digraph DS is acyclic (notice that

if S is acyclic then each 5k , k a K, is acyclic, but the converse is not

true). Bvery acyclic complete selection S defines a family of schedules,

ad every schedule belongs to exactly one such family. Further, the

makespen of a schedule that is optimal for S is equal to the length of a

2

longest path in Ds . Thus in the language of disjunctive graphs, our problem

is that of finding an acyclic complete selection S c 3 that minimizes the

length of a longest path in the directed graph DS-

2. The Approach

Job shop scheduling is among the hardest combinatorial optimization

problems. Not only is it NP-complete (6], but even among members of the

latter class it belongs to the worst: we can solve exactly randomly generated

traveling salesman problems with 300-400 cities (over 100,000 variables) or set

covering problems with hundreds of constraints and thousands of variables,

but we are typically unable to schedule optimally ten jobs on ten machines.

Since job shop scheduling is a very important everyday practical problem, it

is therefore natural to look for approximation methods that produce an

acceptable schedule in useful time.

Most of the heuristic job shop scheduling procedures described in the

literature are based on "priority dispatching" rules. These are rules for

choosing an operation from a specified subset to be scheduled next. They

include such criteria as SPT (shortest processing time), MWKR (most work

remaining), FCFS (first come, first served), etc. The subset of eligible

operations is designed to produce either an "active" schedule (i.e. such that

no operation can be started earlier without delaying some other operation) or

a "nondelay" schedule (i.e. such that no machine is idle at a time when it

could begin executing some operation). These are one-pass procedures of the

greedy type, in that they construct a solution through a sequence of

decisions based on what seems locally best, and the decisions once made are

final. Like most procedures of this type in other areas of optimization, these

heuristics are fast, and they usually find solutions that are not too bad. In

3

many situations this is all that is needed, and so their use is justified.

However, with the rapid increase in the speed of computing and the growing

need for efficiency in scheduling, it becomes increasingly important to explore

ways of obtaining better schedules at some extra computational cost, short of

going all the way towards the usually futile attempt of finding a guaranteed

optimal schedule. Our paper describes an approach meant to acqomplish this

goal.

We sequence the machines one at a time, consecutively. In order to do

this, for each machine not yet sequenced we solve to optimality a one-machine

scheduling problem that is a relaxation of the original problem,. and use the

outcome both to rank the machines and to sequence the machine with highest

rank. Every time a new machine has been sequenced, we reoptimize the

sequence of each previously sequenced machine that is susceptible to

improvement by again solving a one-machine problem.

Our method of solving the one-machine problems is not new; although we

have speeded up by an order of magnitude the time required for generating

these problems. Instead, the main contribution of our approach is the way we

use this relaxation to decide upon the order in which the machines should be

sequenced. This is based on the classic idea of giving priority to bottleneck

machines.

There is more than one way in which a machine can be viewed as a

bottleneck. A first concept of this type is that of criticality. Given a

selection S = U (Sk : kzM) and the corresponding digraph DS, we say that

machine k is critical with respect to S (or the schedule associated with S)

if has sone arc on a longest path in D This definition certainly

makes sense in view of the known fact [2] that any schedule better than the

one associated with S uses a selection in which at least one arc of every

4

longest path in DS is reversed. While appealing and theoretically justified,

this notion is however not sufficiently operational for our purposes: it simply

partitions the sot of machines into critical and noncritical ones without

offering means of distinguishing between degrees of criticality. In order to

prioritize the machines, we need a concept that expresses the bottleneck

quality as a matter of degree rather than a yes or no property. This quality

could be measured, for instance, by the marginal utility of the machine in

reducing the makespan, were it not for the practical difficulty of assessing

the latter. Instead, we use as a measure of the bottleneck quality of machine

k the value of an optimal solution to a certain one-machine scheduling

problem on machine k. To be more specific, let M0 c M be the set of machines

that have already been sequenced by choosing selections Sp, p a M0 , and let

(P(k,M0)) be the problem obtained from (P) by (i) replacing each disjunctive

arc set p p M0, by the corresponding selection S p, and (ii) deleting

each disjunctive arc set p, p a M \ Mo, p # k. This problem is equivalent

to minimizing maximum lateness in a one-machine scheduling problem (for

machine k) with due dates. Machine a is then called the bottleneck among

the machines indexed by M \ MO if v(m, 0) = max{v(kM O) : k a M \ N0), where

v(k,M0) is the value of an optimal solution to (P(k,M0)).

A brief statement of the Shifting Bottleneck Procedure is as follows.

Let NO be the set of machines already sequenced (N0 = * at the start).

Step 1. Identify the bottleneck machine m among the machines

k a M \ N0 and sequence it optimally. Set N0 4- M0 () (a) and go to 2.

Step 2. Reoptimize the sequence of each critical machine k a M0 in

turn, while keeping the other sequences fixed. Then if M0 = M, stop; other-

wise go to 1.

The details are discussed in the next three sections.

6

......

is

3. An O(n) Longest Path Algorithm

To identify in Step 1 the next bottleneck machine to be sequenced,

for each k a N \ 40 we solve the problem

min tn

t. - t. > d. (ij) a kU (S : paM) u AJ I1-1 p 0
(P(kN 0)) t. > 0 i a N

1 -

t .- ti _> di v t. - t .> d . (i,j) a Ek
3 2. J~ - 3

Also, to reoptimize in Step 2 the sequence of each critical machine

k a NO for each such machine we solve a problem of the form (P(k,Mo))

for some subset ' O

Problem (P(k,Mo)) is equivalent to that of finding a schedule for machine

k that minimizes the maximum lateness, given that each operation i to be

performed on machine k has, besides the processing time di, also a release

time r. and a due date fi; where r. is the length of a longest path from

source to node i in DT, and f. is the difference between the length of a

longest path from source to sink and that of a longest path from node i to the

sink, in DT, with T := U (Sp : pSMo) This latter problem in turn can be

viewed as a minimum makespan problem where each job has to be processed

in order by three machines, M1, M2 and M3. of which M1 and 3 have

infinite capacity while 42 processes one job at a time, and where the

processing time of job i is ri on M1 , di on M2, and qi := L - fi on M,

with L equal to the length of a longest source-sink path in DT. The numbers

ri end qi are sometimes referred to as the "head" and the "tail" of job i.

Thus the one-machine problems that we solve during the algorithm are

of the form

6

min t n

t n- ti> di + qi i N

P*(kM O) t ri > i

t . - t . > d . v ti - t >_ dj (j) & Ek
3 13 - 3

where the r i and q. are defined as above, and N* is the set of jobs to be

processed on machine k (corresponding to M2 in this model).

In order to set up problem P*(k,M0) we have to solve 21N*I longest path

problems in DT to calculate the numbers ri and qi. Solving a longest

path problem in an acyclic network on IN*I nodes by standard methods

takes O(IN*I 2) time. We use instead an O(IN*I) algorithm that takes

advantage of the special structure of the digraphs DT on which our problems

are defined.

Typically, the digraphs DT are quite dense: they contain a complete

subgraph for every p a No . However, it is well known that an acyclic

complete directed grajlh is the transitive closure of its unique directed

Hamilton path. Therefore, of the IspIds(p1-1) / 2 arcs of each such

subgraph, only the ISp I arcs that form the unique Hamilton path in the

subgraph are of consequence for the longest path calculation; the rest

can be deleted or simply ignored. In the resulting digraph, say D,

every node except for the source and sink has at least one and at most

two predecessors (successors). The labeling algorithm based on Bellman's

equations can then be modified as follows.

A node i can be labeled when its predecessors have been labeled. We

keep all labeled nodes in a queue. To start, we label the source node and

place it into the queue. Then we repeatedly apply the following

7

Iterative step. Pick the next node from the head of the queue, say i,

remove it from the queue, and for each successor j of i in D*,
T

- check whether j can be labeled

- if so, label j and append it to the tail of the queue.

Stop when the queue is empty.

Each node i has at most two successors in D*, and a successor j of i
T

has at most one predecessor other than i; hence the Iterative Step takes

constant time, and it is applied IN*I times. Thus the algorithm takes

O(IN*i) time.

In our implementation, the graph D* is not constructed explicitly.

Rather than delete the redundent arcs, we keep two sets-of lists: a "job

list" for each job, containing the sequence of operations pertaining to that

job, and a "machine list" for each machine already sequenced, containing the

sequence of operations pertaining to that machine. Every node then appears

on exactly one job list and exactly one machine list; and its predecessors

and/or successors are its neighbors on the two lists.

While the central idea of the shifting bottleneck procedure does not

depend on the way one solves the longest path problems encountered, speeding

up by an order of magnitude the time required for the longest path calcula-

tions, which is the most time-consuming part of our procedure, has had a major

effect on the overall efficiency of the latter.

4. Solving the One-Machine Problem

Having generated a problem P*(k,M0), we then solve it by the algorithm of

Carlier [3], which is closely related to the one by McMahon and

Florian [91. Although this problem is NP-complete in the strong sense [6],

both of the above algorithms, which are of the branch and bound type, are

8

OR -"-"" " "F le{" . ." . ,..,% ," -'.,. '. ' ",.'. ,-.,' . ;."-". -"-'

known to be able to solve in a matter of seconds fairly large problems with

data drawn from a realistic range: Lenstra [8] and Rinnooy Kan [11] report

favorable results with the algorithm of [9] on problems with up to 80 jobs;

Carlier [3] reports excellent results with his version of the algorithm on

problems with up to 1,000 jobs.

For the sake of completeness, we outline here the version of Carlier's

algorithm that we implemented. For details the reader is referred to [3].

At every node of the branch and bound tree, a heuristic based on the

MWKR (most work remaining) priority dispatching rule is applied to the

current one-machine problem. To be specific, we start by setting

t = min{r: j a N*), S = N*, and then repeatedly execute the following

Iterative Step. Among the unscheduled jobs ready to be scheduled at

time t (i.e., those j a S such that r. < t), choose one, say j, with the

greatest qi (if there are ties, break them by giving preference to the

greatest di), and schedule it by setting t. : t, S := S \ Q)}. Then if

S =, stop; otherwise set t := max{t. + d., min{r. : j v SI) and return.

Along with the schedule generated by the above heuristic, we obtain a

critical path in the disjunctive graph associated with the problem. Let

j(), ... , j(p) be the nodes on this critical path other than the source and sink

(in case of multiple critical paths, any one can serve). Let k be the lar-

gest integer in {, ..., p} such that qj(k) < qj(p), and let

J = {j(k+l), ... , j(p)}. The set J plays two roles. First,

h(J) : min{r i : i a J} + E(d. : izJ) + min{qi : i a J}

is easily seen to be a lower bound on the minimum makespan. Second, it can

be shown that in any optimal schedule job j(k) comes either before or after

all jobs i a J.

9

While the lower bound h(J) can be used to discard nodes of the branch

and bound tree for which the upper bound is attained, the dichotomy defined

by the position of J(k) relative to J can serve as the basis of a branching

rule. Namely, if the current node of the search tree cannot be discarded by

comparing the lower and upper bounds, it can be replaced by two

successor nodes, one in which job j(k) has a new tail qk large enough

to force the heuristic to schedule job j(k) before all i a J, and a second

one in which job j(k) has a nw head rt(k), large enough to have job j(k)

scheduled after all i a J.

The branch and bound trees generated by the procedure are typically

much smaller than n, and they rarely exceed 2n.

5. The Local Reoptimization Procedure

Let M0 be the set of machines already sequenced, and let k(l), ... , k(p)

be an arbitrary ordering of M. (here p = 1M401). By a local rwoptimization

cycle we mean the following procedure. For i = 1, ..., p, solve the

problem (P*(k(i),M0 \{k(i)))) and substitute the optimal selection Sk(i) for

the old selection. As long as IM01 < IMI - 1, we go through at most three

local reoptimization cycles for each set M0 . At the last step, when

IM0l = IMI - 1, we continue the local reoptimization to the point where

there is no improvement for a full cycle.

The problems (P*(k(i),M0 \{k(i)))) encountered during local reoptimization

are generated and solved by the same techniques as the problems (P*(k,M0)),

discussed in sections 3 and 4. The ordering k(l), ... , k(p) of M0 is at

first given by the order in which the machines indexed by N0 were sequenced.

Every time a full cycle is completed, the elements of M0 are reordered

10

I?1

according to decreasing values of the solutions to the problem

(P*(k(i).MO\{k(i)))).

Finally, upon completion of the local reoptimization procedure

for a given N., we found it useful to repeat the procedure after temporarily

removing from the problem the last (according to the current ordering) a

noncritical machines, i.e. deleting the corresponding selections Sk(i) from

the associated graph (we take a to be the minimum of IN0a1/2 and the number of

noncritical machines in NO). At the end of the cycle, the machines that had

been removed are reintroduced one by one, successively, and the cycle is

completed. This second, modified procedure typically finds additional

improvements.

6. Truncated Enumeration

As the computational results of the next section show, the shifting

bottleneck procedure almost always obtains considerably better schedules than

the best among the priority dispatch rule heuristics, and it frequently finds

an optimal schedule. Nevertheless, for situations when the quality of the

schedule is sufficiently important to justify a more intensive computational

effort, we have developed a second version of our approach, which applies the

shifting bottleneck procedure as described above to the nodes of a truncated

enumeration tree.

The nodes and arcs of our search tree can be described as follows.

Every node corresponds to a set M0 of machines that have been sequenced.

In particular, the node corresponding to a given M0 represents the problem

(P(Mo)) obtained from (P) by replacing the disjunctive arc sets Rp, p t MO,

by the selections Sp, p a M. Every arc corresponds to a pair of sets MO,

Mk, where M. :M 0 " {k) for some k a Mo\ M. At a typical node of the

11

search tree corresponding to some set N0 , we apply to (P(M 0).) the shifting

bottleneck procedure as described in the previous sections, with the

difference that whenever we rank the machines according to decreasing v(k,M0)

in order to identify the current bottleneck, we store a certain number of the

one-machine problems generated for further exploration later in the process.

To be specific, for a node corresponding to a given M0 , we store as successor

nodes in the search tree the f() highest ranking problems (P*(k,M0)),

k a M \ N0. Here 8 is the level of the tree, equal to IM0 1, and f is a

decreasing function of A whose parameters are chosen to reflect consider-

ations based on problem size, available storage space and limits on computing

time.

A second instrument for limiting the size of the search tree is a penalty

function, defined for every node, that penalizes the choices made at different

levels in generating the node in question, in proportion to their deviation

from the bottleneck, and with a weighting that is heavier for the higher than

for the lower levels of the tree. Whenever the value of the penalty function

for a node exceeds a predetermined limit, the node is discarded.

Whenever a node of the search tree is chosen to be processed, in

keeping with the bottleneck principle it is the highest-ranking unexplored

node among the successors of its parent node. As to our search strategy, we

use a combination of breadth first with depth first. In a first phase, we

generate all the nodes provided for by the successor function f(S) for the

levels 8 = 1, ..., I* (we actually use S* = r.1/21). At the end of this

phase, all the active nodes of the search tree are on level 0$. Further, they

form groups of f(S*) nodes, each group containing the successors of a node

on level 8$ - 1. Next we switch to a procedure that selects the

highest-ranking member of one of the groups, based on an evaluation defined

12

-I~- fW

for every group, and explores the associated branch straight to the bottom of

the search tree, or an far as the penalty function permits. Naturally, the

current best solution value in always stored as an upper bound, and branches

on which the upper bound is attained are abandoned. When the bottom of

the tree is reached or further advance along a branch is foregone because of

the penalty function or the bound, we select the highest-ranking member of

another group of nodes and continue.

7. Computational Experience

A FORTRAN implementation of the Shifting Bottleneck procedure was

tested on a VAX 780/11, on problems taken from the literature or generated

for the purposes of this experiment. The problems range from small ones, for

which an optimal solution was known, to problems involving up to 500

operations.

The problems in Tables 1 and 2 have the following characteristics. All

jobs have to be processed on all machines (except for Problem 1, which has a

more special structure). The sequence of machines for each job is randomly

generated from a uniform distribution. Problem 1 is from (8], problems 2, 3

and 4 are from [10], problems 10-15 are from [7], while the remaining problems

were generated by the authors, with processing times randomly drawn from a

uniform distribution on the interval (50, 1001 for problem 5, (25, 100] for

problem 6, [11, 40] for problems 7, 8, 9, and [5, 99] for problems 16-19. The

Tables give the dimensions of the problems and the results obtained by

solving them with the Shifting Bottleneck procedure in its straight version

(SBI), as well an in its enumerative version (SB1I).

As the results show, SBI took on the order of one to two minutes for the

larger problems, although it involved hundreds of micro-runs, i.e. one-machine

problems. The degree of difficulty of solving a problem by SBI of course

13

- -

A* ?AA
P-4 0-

P4 -

P4 44

CI -O S - r

a Q

0. f.C2 A O 4 0 P P
F44

A CV 0 t o t A i 1 .

".40 -- -- - -

pa

U1

N 00
N- N

In U N ICt0 I IN al I I IN to Ir N 4

CO ~ 1 I~ N t-

0;~ 06 0

~S N Ngo

N 4 P "- r4 M4 r - N N - 4

0 -

-004 to2 000

P-04

a- a- P 4 a- a- ra a" a- - - 2

sharply increases with the number of machines. However, for a given number

of machines, an increase in the number of jobs does not seem to make the

problem more difficult; on the contrary, while the computational effort shows a

moderate increase, the quality of the solutions found seems to improve. In all

the problems with ten machines and 30 or more jobs, without exception, the

optimal solution was found by SBI and was proved to be optimal, because the

lower bound provided by the bottleneck problem on the first level, i.e. the

value max{v(k,s) : k g M), was not exceeded by the makespan of the schedule

found by the procedure. Naturally, in these cases the proven optimality of

the solution has eliminated the need to apply SBII. This seems to be quite a

remarkable property of the Shifting Bottleneck Procedure.

Among the problems of Table 1, Problem 3 is the notorious ten jobs/ten

machines problem from Muth and Thompson [10, p. 2361 that has defied

solution for more than 20 years in spite of the fact that every available

algorithm was tried on it. Over the years, better and better solutions were

discovered, usually in computer runs that took several hours and generated

tens of thousands of search tree nodes. A couple of years ago, a solution

with a value of 930 was found (a new record at the time) at the end of just

such a long run. More recently J. Carlier and E. Pinson have announced that

after another long run that generated 22,000 nodes in five hours on a Prime

2655 computer this solution was proved to be optimal [Sa]. The enumerative

version of the Shifting Bottleneck procedure found this solution in just over

five minutes of VAX 780/11 time (without, however, proving optimality).

In order to compare our procedure with other methods, we solved 40 test

problems generated by Lawrence [7] that were also solved by him with ten

different procedures based on priority dispatching rules, both straight and

randomized. In these 40 problems, each job is to be processed on every

16

machine, the sequence of machines for each job is random, and the processing

times are randomly drawn integers from the interval [5, 991. (Problems 1, 2 of

Tables 7, 8, 9 are the same as Problems 10-15 of Table 2.)

The ten priority dispatching rules (p.d.r.'s in the sequel) used by

Lawrence are as follows:

1. FCFS (First Come First Served). Select the operation that

becomes available at the earliest time.

2. LST (Late Start Time). Select the operation with earliest late

start time (same as MWKR).

3. EFT (Early Finish Time). Select the operation that can be

finished earliest.

4. LFT (Late Finish Time). Select the operation with the earliest

late finish time.

5. MINSLK (Minimum Slack). Select the operation with minimum slack

time.

6. SPT (Shortest Processing Time). Select the operation with the

shortest processing time.

7. LPT (Longest Processing Time). Select the operation with the

longest processing time.

8. MIS (Most Immediate Successors). Select the operation with the

largest number of successors.

9. FA (First Available). Select the first available operation.

10. RANDOM. Select randomly among the available operations.

These p.d.r.'s were first applied in a straightforward fashion, then each of

them was randomized. The randomized rule is to select one of the available

operations at random from a probability distribution which makes the odds of

being selected proportional to the priority assigned to each operation by the

17

given dispatching rule. The run is then repeated ten time., and the best

result obtained is reported.

On the 40 test problems, none of the ten priority dispatching rules

dominated all the others. Eight of the ten rules gave the best result on at

least one problem; the remaining two, LPT and FA, were never best. Since the

computing times required by any of the p.d.r.-based procedures are modest

(although much less so in the randomized than in the straight case), we chose

the best of the ten results for each problem and recorded as computing time

the sum of the CPU times for the runs with the eight rules that were

effective in at least one case (in other words, we simply ignored the time for

the runs with the two rules that proved ineffective). Tables 3 - 10 show

the results, alongside with those obtained for the straight and the

enumerative versions of the Shifting Bottleneck Procedure (SBI and SBII,

respectively).

As the tables show, the straight version of the Shifting Bottleneck

Procedure (SBI) finds solutions that are most of the time (in 38 out of the 40

cases) better than the solutions found by the p.d.r.-based procedures,

whether in their straight or randomized version, at a computational cost that

is usually comparable to that of the straight p.d.r.-based procedure, but at

least an order of magnitude lower than that of the randomized version of the

procedure.

Further, the enumerative version of the Shifting Bottleneck Procedure

(SBII) most of the time finds substantially improved solutions over those found

by the straight version. In order to make the comparison between SBII and

the p.d.r.-based procedures conclusive, SBII was run on each of the 40

problems with a time limit set to the CPU time required by the randomized

18

do - ~ t "
* '-I S 4
* mae ;

alp 4J (

P~ to V

C "4

Iu~IN

o 4" N Nq4

F434

S". "4q

199

- - - - -

C4 C4

go a* a c

CO

1 C4
to I

I cn

I

00

R ,
gn Na C;

c ca

Q ca N c N N)

Vll P'n C" w

Is

-20

Ma

Co I-I P--I "
ae c o co

__ v ;H

40

go,

C4 CV) ow0 0

21 0-

Oki--
Sn a - -An

LO 0 qw C-

F-4 _ _ _ _ 10 W

F41

401

C; 0 O V-0

- - M

0 0i

41, s1

.0
rq 0

411

.94 £ in a so O 4 so

220

-~(c0 C 4

CC - o 0~

-V CM2

C. 3O M Co) q

04M0

w Co3 - CqC

0o w 0; 4 Co t4t- N r-4 N - -q
0 i~C O

* t-
.04 ____

a0

.r -4 N Co 0

-- i - -

CC

S U N r- -4S

P50 - 04 -n O)

- -- - 0

23' C ~ oC

PS - C,1]2kNl ("I 0

.I, I r-

Nn A

in In

0 T

sc~ sg24

U IA 0 t, "

C9I co 10

__4 #-I1

I I I
m P- - -

P- - -4 P4 e

Mr 11111* W 4
S-

..

___ 1111

IO NM
C4 0* L-

C4 L

IA to 0 1

co v- (A o - F -4

a 4a

f-
I0-

N0 SO to (A0, 1 -

S-0 M -4 - -

U2

p.d.r.-based procedure on each of the problems. The result, as shown in the

Table., is that the SBII solution in always, without exception, at least as good

as that found by the randomized p.d.r.-based procedure in the same amount of

time, and in the vast majority of the cases it is considerably better. The

typical improvement is somewhere between 4 per cent and 10 per cent.

Acknowledgment

Thanks are due to Steve Lawrence for making his problem set and his

computational results available to us.

References

[1] K. R. Baker, Introduction to Sequencing and Scheduling. Wiley, 1974.

[21 B. Balas, "Machine Sequencing via Disjunctive Graphs: An Implicit
Enumeration Algorithm." Operations Research, 17, 1969, p. 941-957.

[31 J. Carlier, "The One-Machine Sequencing Problem." European Journal of
Operational Research, 11, 1982, p. 42-47.

(41 R. N. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling.
Addison-Wesley, 1967.

[51 S. French, Sequencing and Scheduling: An Introduction to the
Mathematics of the Job Shop. Wiley, 1982.

[61 M. R. Garey and D. S. Johnson, Computers and Intractability. W. H.
Freeman and Co., 1979.

(7] S. Lawrence, Supplement to "Resource Constrained Project Scheduling:
An Experimental Investigation of Heuristic Scheduling Techniques." GSIA,
Carnegie Mellon University, October 1984.

(8) J. K. Lenstra, Sequencing by Enumerative Methods. Mathematical Centre

Tract 69, Mathematisch Centrum, Amsterdam.

[Sal J. K. Lenstra, Personal communication, May 1986.

(91 G. McMahon and M. Florian, "On Scheduling with Ready Times and Due
Dates to Minimize Maximum Lateness." Operations Research, 23, 1975, p.
475-482.

I
(101 J. F. Muth and G. L. Thompson, Industrial Scheduling. Prentice-Hall,

1963.

27

I I I - I' - mom

(111 A. R. G. Rizncoy Kano Machine Scheduling Problems: Claaficat ion,
Complexity and Comnputations. Nijhoffg The HIAgue, 1976.

(121 R. Roy and B. Susmamn, "Los problem.. d'ordonnanceuaent avec
conintraintes diaJuractiven." Note DS No. 9 bis, SDMg Parie, 1964.

28

--'V .- .LAbflsh # ISM OF @ TWIS Paths lese aws, aeal

RE6OR a2 DOCUMENTATION PAGE DeIt RZAwftTRLC1 ORM

The hifingSottenek ~Technical Report, July 1986

jfor Job Shop Scheduling -. -PaRF@Rwo OMG 11191,00. NUmma

Joseph Adams, Egon Balas, and Daniel Zavack oOc~g o1

11. P19N.OP4001 ORGANIZATION NAME AND A0DRES 10 PROGRAM LEMT. PMROJICT. TAS(IGraduate School of Industrial Administration AE OKUI USR
Carnegie Mellon University

Pittsburgh PA 15213

~~~crlc 11"IRO..4CCPCEhu AND AcDRess is. "R!'r O.'T4

Personnel and Training Research Programs July 1986

'Of fice of Naval Research (Code 434) 27"NDMER O81 PAGZES
Arlington VA 22217 __________

5.MONITORING AGENCY NANE A AOONESS(5 dUtuu e bur CMWS#IhW 0000.. IL. SECUMITV CLASS. (of this r.~p..

'4. OCl.S8IICATI,iJ',h,4..i.4G

Is. OgST9419uT10w STATEMENT Cot thee* Xge* IDISTIBUTION STATEMENT A
Approved for public releasel

Distribut ion Unlimited

D? IST06BUTiOft STATZ-461NT (of thm. abo&4 .. t0e~d 80 AN.* 20, it deinI .em)

W SUPPL4NElN OTES

M KEY WODSI icem. so veee std ofI~ *""M awomfFby0"os
b scheduling

heuristicsL .bottleneck B

.W- It "g.e awy md 0d U& or 104km)
'LO*lQjc~cL;Z awnapprozimtion method for solving the minimum makespan problem of

job shop scheduling. It sequences the machlKij one by one, successively, taking'
each time the machine identified as a bottleneck among the machines not yet 3
sequenced. Every time after a new machine is sequenced, all previously establi-I
shad sequences are locally reoptimixed. Both the bottleneck identification and
the local reoptimization procedures are based on repeatedly solving certain one-1

Smachine scheduling problems. Besides this straight version of the Shifting
Bottleneck Procedure, we hae also impulmntsd - maeo thot appLee the pro--4

i 43 EngwPwVSSLT (cont.)

sacuRIlTy CL SFCASOft OPP fthS 04G8 (W- Dale 'Wsel



20 (Continued)

*edure to the nodes of a truncated search tree. Computational testing shows that our
approach yields consistently bitter results than other procedures discussed in the
literature. A high point of our computational testing occurred when the enumerative
version of the Shifting Bottleneck Procedure found in a little Over fite minutes an
optimal schedule to a notorious ton machines/ton jobs problem on which many algorithms
have been run forhours without finding an optimal solution. b -f :

-i .N



ol


